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Ni/NHC was found to catalyze the rearrangement of vinyl aziridines and aziridinylen-ynes under mild
conditions.
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A primary interest of our group is the development of efficient
cycloadditions that afford heterocycles and carbocycles. We have
found that Ni/NHC complexes effectively catalyze the cycloaddi-
tion of diynes with CO2,1 isocyanates,2 carbonyls,3 and nitriles.4

These reactions afford pyrones, pyridones, pyrimidinones, pyrans,
and pyridines in high yields. In addition, the same Ni/NHC system
also mediates the rearrangement of vinyl cyclopropanes5 and
cyclopropylen-ynes.6 As part of our continuing effort in this field,7

we present our investigations involving the Ni-catalyzed reactions
of vinyl aziridines8,9 and aziridinylen-ynes.
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Table 1
Ni-catalyzed rearrangements of 1aa

Entry Ligand % Conv. of 1ab

1 IPr 100
2 SIPr Trace
The Ni-catalyzed rearrangement of 1-trityl-2-vinylaziridine
(1a)10 was investigated, and a variety of tertiary phosphines and
N-heterocyclic carbene ligands (NHCs)11 were explored as potential
ligands (Eq. 1, Table 1). In most cases, no reaction was observed (en-
tries 2–7). However, when IPr was employed, vinylaziridine 1a was
smoothly converted to an a,b-unsaturated imine 2a12 (entry 1).13

No rearrangement was observed in the absence of ligand (entry 8).
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It is known that the type of protecting group can have a large
influence on the product that is obtained.8,14–16 As such, a variety
of vinylaziridines containing different protecting groups were
investigated using Ni(COD)2/NHC as catalyst (Eq. 2, Table 2).17 Most
vinylaziridines underwent rearrangements at room temperature
except 1-tosyl vinylaziridine (1f),18 which destroyed the catalyst
(entry 7). The Ni/NHC-catalyzed rearrangements of vinylaziridines
were highly substrate-dependent. 1-Benzoyl vinylaziridine (1b),19

1-Boc vinylaziridine (1c),20 and 1-methoxycarbonyl vinylaziridine
(1d)21 were isomerized to the corresponding 5-vinyl-2-oxazoline
(entries 2–4).22,23 Interestingly, the Ni/IPr-catalyzed rearrangement
of 1-benzhydryl vinylaziridine (1e)24 did not afford an a,b-unsatu-
rated imine. Instead, a 1,3-butadienylamine (2e) was obtained
(entry 5). However, when IPr was replaced with its saturated ana-
log, SIPr, 1e was converted to the expected a,b-unsaturated imine
2e0 (entry 6).
a Reaction conditions: 5 mol % Ni(COD)2, 10 mol % ligand, toluene, 60 �C,
overnight.

b Determined by GC using naphthalene as an internal standard.
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Table 3
Ni-catalyzed rearrangements of 4aa

Entry L time (h) Ratiob 5a:6a:7a % Conversion of 4a

1 None 12 — 0
2 PPh3 12 — 0
3 PBu3 12 — 0
4 IMes 6 1:2:trace 100
5 IPr 2 1:1:trace 100
6 SIPr 6 4:1:trace 100
7 ItBu 2 Trace:trace:1 100

a Reaction conditions: 5 mol % Ni(COD)2, 10 mol % ligand, C6D6, 60 �C.
b Determined by 1H NMR.
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Figure 1. Aziridinylen-ynes.

Table 2
Ni-catalyzed rearrangements of vinylaziridinesa

Entry R NHC Productb

1 Tr (1a) IPr Tr N 2a

2 Bz (1b) IPr

N

OR' R' = Ph (2b)
R' = OBut (2c)
R' = OMe (2d)

3 Boc (1c) IPr
4 MeO2C (1d) IPr

5 CHPh2 (1e) IPr
Ph2HC

H
N 2e

6 CHPh2 (1e) SIPr Ph2HC N 2e'

7 Ts (1f) IPr N.R.

a Reaction conditions: 5 mol % Ni(COD)2, 10 mol % NHC, toluene, overnight.
b Determined by 1H NMR.
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The rearrangement of vinylaziridines to imines or 1,3-butadie-
nylamines can be rationalized by the formation of a key p-allyl/
Ni complex (Scheme 1). Due to the difficulty of reductive elimina-
tion of C(sp3)–N bond,25 this p-allyl/Ni complex undergoes
b-hydride elimination followed by reductive elimination. 1,3-Buta-
dienylamine or imine arises from metallazetidine intermediate
(3e0) or metallapiperidine intermediate (3e), respectively.

In an effort to block competing b-hydride elimination pathways,
the cycloaddition of a vinyl aziridine possessing a tethered alkyne
was evaluated. 1-Trityl-2-(3-(2-butynyloxy)-1-propenyl)-aziridine
(4a)26 was subjected to the standard cycloaddition conditions in
the presence of a variety of ligands (Table 3). No rearrangement
was observed in the absence of ligand or when tertiary phosphines
were used as ligands (entries 1–3). However, aziridinylen-yne 4a
did react when NHCs were employed (entries 4–7). Interestingly,
the rearrangement of aziridinylen-yne 4a afforded three different
products whose ratios were dependent on which NHC ligand was
employed. NHCs possessing an aromatic side chain (IPr, SIPr, and
IMes) afforded two different azepines (5a and 6a). IMes favored
the formation of azepine 6a (entry 4), whereas SIPr favored the for-
mation of azepine 5a (entry 6).27 IPr showed no selectivity be-
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Scheme 1. Proposed mechanism of rearrangements of vinylaziridines.
tween these two azepines even at lower catalyst loading and less
reaction time. In contrast, the Ni/ItBu-catalyzed rearrangement of
aziridinylen-yne 4a gave a conjugated unsaturated imine (7a)
selectively, which is consistent with the Ni/ItBu-catalyzed rear-
rangement of cyclopropyen-yne.6
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Other aziridinylen-ynes possessing a bulky protecting group
(i.e., t-butyl (4b)28 and benzhydryl (4c),29 Fig. 1) also underwent
Ni-catalyzed rearrangement reactions. Conjugated imine products
(7b,c) were again observed exclusively, when ItBu was employed.
Similarly, a mixture of bicyclic azepines (i.e., 5b,c and 6b,c) was ob-
served, when N-aryl NHCs (i.e., IMes, IPr, SIPr) were employed.
Interestingly, azepines 5 and 6 appear to arise from C–C cleavage,
rather than C–N cleavage, of the aziridine ring. It is possible that
the steric hindrance of N-protecting groups prevents the nitrogen
atom from coordinating to nickel center and disfavors C–N bond
cleavage.

In summary, the combination of Ni(COD)2 and a bulky NHC
ligand serves as a catalyst for the rearrangement of vinyl aziridines
and aziridinylen-ynes. Vinyl aziridines were typically converted to
straight chain products. Aziridinylen-ynes afforded a mixture of
heterocyclic products. Mechanistic investigations are ongoing.
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